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ABSTRACT. In this paper, we study the incompressible Navier-Stokes equations
on a moving domain in R? of finite depth, bounded above by the free surface
and bounded below by a solid flat bottom. We prove that there exists a unique,
global-in-time solution to the problem provided that the initial velocity field
and the initial profile of the boundary are sufficiently small in Sobolev spaces.

1. Introduction. In this paper, we study a viscous free boundary value problem
with surface tension. The Navier-Stokes equations describe the evolution of the
velocity field in the fluid body. With boundary conditions stated below, we have
the following system of equations:

vn+v-Vo—pAv+Vp=0 in Q,

V-v=0 in €,

v=0 on Sp,

Ny = v3 — v10; —v20,n on S,

png = p(vij + vji)n; + (977 A

(NSF)
Vn

V14 |Vnl?

where Q; = {(x,y,2) : =1 < z < n(x,y,t)} having two boundaries Sp = {(z,y, 2) :
z=n(z,y,t)} and Sp = {(x,y,2) : z = —1}. i = (n1, N2, n3) is the outward normal
vector on Sg. p is the constant of viscosity, g is the gravitational constant, and [ is
the constant of surface tension. From now on, we normalize all the constants by 1.
(We follow the Einstein convention where we sum upon repeated indices. Subscripts
after commas denote derivatives.)

The boundary condition of the velocity at the bottom Sp is the Dirichlet con-
dition, v = 0, which is the boundary condition of the Navier-Stokes equations on
a fixed domain. Therefore, we can apply the Poincare inequality to control lower
order terms by using higher order terms.

On the free surface Sp = {(z,9,2);z = n(z,y,t)}, we have three boundary
conditions:

e the kinematic condition: we represent the free boundary by d(x,y,z,t) = z —
n(z,y,t) = 0. Since the free boundary moves with the fluid, (0; + v - V)(z —

))nl on Sr,
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n(x,y,t)) = 0, from which 1, = v3 — v10,m — v20yN.
e the shear stress boundary condition: (f- Vv -7 47 - Vv - ) = 0, where £ is any

1
——————(—0,n,—0yn, 1).
= |V77|2( 1, =0yn,1)
\%
e the normal force balance condition: pn; = (v; j+v,;)n;+nn;—V-( 1

—)n;.
V1+ |V77|2)

Since the problem is posed on a domain, compatibility conditions for the initial
data are needed and are as follows:
{(v0)ij + (v0)jittan =0 on Sp={(2,y,2):2=mno(z,y)},
V- Vo = 0 in QQ,
v=0 on Sp={(z,y,2):2=-b},

tangential vector on the free boundary and n =

where (tan) is the tangential component, and the first condition is obtained by
taking the inner product with the pressure on the initial surface and any tangential
vector.

Let us briefly compare the free boundary problem of the Euler equations with
that of the Navier-Stokes equations. Earlier works on the free boundary problem of
the Euler equations were treated under the assumption that the flow is ir-rotational.
The fluid motion is described by a velocity potential which is harmonic, and such
a system can be reduced into a system where all the functions are projected on the
free surface. See [8] for the system of equations on the free surface. The first break
through in solving the well posedness for the ir-rotational Euler equations without
surface tension, for general data was attributed to Wu [20], [21]. However, for the
Navier-Stokes equations, it is impossible to assume that the flow is ir-rotational
from the following reason. The shear stress condition implies that the tangential
part of the vorticity on the boundary satisfies

wr=w—(w-A)h=-2nxVv-n==20xV)-(A-v)+2u;((R x V)n;),

where (7 X V) = (n20, —ngdy, ng0y — n10.,n10, — n20;) is a tangential derivative.
This condition prevents a viscous flow from being ir-rotational as is evident in two
dimensional flow. In a local coordinate system, the vorticity w at the free surface is
given by w =7, - Vv -t —t- Vo - . From the shear stress condition, we rewrite w as

. ) o . 0 R on g ) .
w:—2t~Vv~n——2£-v——2$(v-n)+2u~$——Qas(v-n)—FQ(v-t)ﬁ,

where & is the curvature of the surface. This means that the vorticity develops at
the free surface whenever there is relative flow along a curved surface so that the
vorticity does not vanish at the free surface. See [12]. For the recent works on the
Euler equations for the rotational case, see [2, 7, 11, 14, 22]. In particular, in [14]
their approach is based on the geometric interpretation of the Euler equations as a
flow in the space of volume preserving maps and on the variational formulation of
the free boundary problems. We will use a similar idea used in [14] to obtain the a
priori estimate in section 2.

The second difference highlighted in this paper is the instability condition. One
of the main issues for the Euler equations is the Rayleigh-Taylor sign condition
of the pressure term. In the absence of this condition, Ebin [10] proved that the
problem is ill-posed. In the presence of surface tension, the pressure term becomes
a lower order term so that instability does not occur. The role of surface tension
related to the Rayleigh-Taylor instability and its regularizing effect is well explained
in [14] in terms of differential operators defined by identifying the correct linearized
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problem. For the Navier-Stokes equations, however, the pressure term is a lower
order term even with surface tension. Moreover, the viscosity alone provides all the
necessary regularizing effects on the velocity field. Surface tension plays a different
role for the Navier-Stokes equations. It provides higher regularity for the boundary
function and generates more decays on the boundary function as well so that we
can obtain a global-in-time result.

Before we proceed to the results in this paper, let us present some existing results
of the Navier-Stokes equations on a moving domain. In the presence of surface
tension, in [4], Beale studied the motion of a viscous incompressible fluid contained
in a three dimensional ocean of infinite extent, bounded below by a solid floor
and above by an atmosphere of constant pressure. His approach is to transform
the problem to the equilibrium domain dependent on the unknown 7. The entire
problem can be solved by iteration in K”. (For definition of parabolic-type Sobolev
spaces K", see [4].) In the absence of surface tension, Beale, in [3], showed the local
well-posedness for arbitrary initial data with certain regularity assumptions. He
also proved that for any fixed time interval, solutions exist provided the initial data
are sufficiently close to the equilibrium. Along the same lines in [4], Sylvester [13]
showed that viscosity alone prevents the formation of singularities so that solutions
exist globally-in-time for small initial data with higher regularity. In the case of a
bounded domain, Solonnikov investigated the fluid motion of a fluid of finite mass,
and obtained a global-in-time solution with [16] or without [17] surface tension. In a
three dimensional domain of infinite extent and finite depth, Tani-Tanaka [18] solved
the problem with or without surface tension using Solonnikov’s method rather than
Beale’s method. These three works [16, 17, 18] were also dealt in K" space. In a
bounded domain, Coutand-Shkoller [6] used energy methods to establish the a priori
estimate which allows to find a unique weak solution to the linearized problem in
the Lagrangian coordinates, then applied the topological fixed point theorem to
obtain a solution. In [6], they obtained the a priori estimate in spaces which are
almost the same space for the Navier-Stokes equations on a fixed domain. (We will
explain in more details the results [4] and [6] below.)

The paper is organized according to the following outline. In section 2 we will
obtain the a priori estimate on the moving domain. The basic L? energy estimate
is easily derived by multiplying the momentum equation by v and integrating over
the spatial variables. If the problem is posed on the whole space, we can obtain
higher energy bounds by taking derivatives of the equations, while we cannot take
usual partial derivatives to equations on the moving domain because the domain
is not translation-invariant in the spatial variables. Instead, we will obtain global-
in-time estimates on the moving domain using a second order differential operator,
which is derived by projecting the momentum equation onto the divergence-free
space. However, we do not know how to iterate the system locally-in-time on the
moving domain so that we cannot solve the problem by obtaining the a priori
estimate on the moving domain first. But, the importance of these estimates is that
most of calculations used in the following sections are based on these estimates.
Moreover, we can choose the regularity of initial data from the new formulation of
the momentum equations in section 2. Finally, as we know, this is the first result
of obtaining the a priori estimate on the moving domain without transforming the
system of equations to a fixed domain.
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In this paper, we solve the problem by fixing the domain first, and then deal
with the problem on the fixed domain. By reversing steps, we can solve the prob-
lem on the original moving domain. Traditionally, one might fix the domain by
the Lagrangian map. Then, the solvability of the problem is strongly dependent
on the L' in-time estimate of the velocity. But, we have L> or L? in-time esti-
mates of the velocity when we use the usual energy estimates for the Navier-Stokes
equations so that we only expect local-in-time results if we fix the domain by using
the Lagrangian map. As an example, we present the work of Coutand-Shkoller [6].
Let Q C R? denote an open bounded domain with boundary 'y = 0. For each
t € (0,T], we wish to find the domain €, a divergence-free velocity field u(t), a
pressure p(t), and a volume preserving transformation 7(t) : Qg — R? such that

U= 77(157 QO)a 5#7(15;13) = U(tﬂ?(ta IE)),
up — Au+ (u- V)uVo+ Vp = f,
V-u=0,

(Defu)-n—pn=cHn on T},

where o denotes surface tension, H denotes the mean curvature of the surface, and
Defu is twice the rate of deformation tensor of u. Let a(x) = (Vn)™t, v =uon
denote the Lagrangian velocity field, ¢ = p o i is the Lagrangian pressure, and
F = f on is the forcing function. Then, the above system can be written as

8757_7 =0 Uf - (afafvf&g + a?q,k = Fi_atn(t>w) = u(t,n(t, z)),
(vhaf +v'pal)a] Ny — qal Ny = oy ()",

where N denotes the outward unit normal to I'y and Ay(n) = (Hn) on, and they
prove the following theorem.

Theorem 1.1. Let Qo C R3 be a smooth, open and bounded subset, and sup-
pose ug € H? satisfies the compatibility condition [DefuoNlin = 0 and that
ferL*0,T;HY), f € L*(0,T; (Hl)/). Then, there exists a T > 0 such that there
exists a solution to the problem. Furthermore, n € Co([0,T]; H3), and 0A4(n) €
LQ(O,T;H%(I‘O)). Moreover, the solution is unique if f, fi, and Vf are uniformly
Lipschitz in the spatial variables.

For the Navier-Stokes equations on the whole space, however, we can obtain a
global-in-time solution for small initial data. This is the first motivation of this
paper. Namely, we want to obtain a global-in-time result for small initial data
even under the influence of the moving surface. In order to obtain a global-in-time
result, we will solve the problem on the equilibrium domain. The transformation
from the moving domain to the equilibrium domain will be presented in section 3.
The transformed system of equations on the equilibrium domain is given by

w—Aw+Vg=f in Q={(z,y,2): —-1<z<0},
V-w=0 in €,
(LNSF){ w;3+ws;=g; on {z=0}, m=ws on {z=0}
g=ws3+n—Agn+gs on {z=0}
w=0 on {z=-1},
where f and g; are quadratic functions of w and 7. If we solve this linearized
problem, then we can solve the full problem on the equilibrium domain by the
contraction mapping theorem. This idea can be found in [3, 4]. Here, we present
the main result in [4].
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Theorem 1.2. Suppose r is chosen with 3 < r < L. There exists § > 0 such

2
that for vy and no satisfying ||nol| gr(r2) + HUOHHT'*%(QO) < § and the compatibility

conditions, the problem has a solution v, n and p, where n € K2 (R% x RY) and
v and p are restrictions to the fluid domain Q; of functions defined on R> x RT,
with v € K"(R3 x RY) and Vp € K""2(R? x RT).

Let r =3+ 6. v € K" implies that v € H?H;_S, which is embedded in CyH,~*
if s >1. By setting s=1+4¢, r—s =240 — e. Since the initial data is in H—3
and r — % > 2+ § — ¢, the solution does not preserve the initial regularity H T3
as it evolves in-time. This happens because he solved the problem by taking the
Laplace transform in-time to make the system of equations stationary. Let A be a
dual variable of the time variable. Then, the momentum equation of the velocity
field and the evolution equation of the boundary become

M= R, Mo+ A+ E(1—A)j=f,

where A is a positive definite, self-adjoint operator, F is the formal adjoint with L?
norm of the restriction operator R on the free boundary. By substituting the first
equation into the second,

Auﬁ—kAuG—k%Bu?:f,

where B = E(1 — A)R. He obtained the a priori estimate of this equation by
considering large A and small A separately, which implies that in the original time
variable, the solution is in L? in-time, not L™ in-time. This is the second motivation
of the paper. Our goal is to obtain a solution in L* in-time.

Following [4], we will solve the problem on the equilibrium domain, but without
taking the Laplace transform in-time to transform the time evolution problem into
the stationary elliptic problem. Instead, we will obtain a solution by using the
energy method in the same space used for the Navier-Stokes equations on a fixed
domain. In section 3 we present how we solve the problem on the equilibrium
domain under the assumption of the solvability of (LNSF). In section 4 we will prove
that (LNSF) has a weak solution in L?, and it has higher regularity under higher
regularity of initial data and external forces (Proposition 4.1). To prove Proposition
4.1, from the face that the domain is translation-invariant in the horizontal direction,
we first take tangential derivatives to the momentum equation to obtain energy
bounds of tangential derivatives of the velocity field. Other bounds can be derived
from the divergence-free condition and from the momentum equation. However, we
cannot obtain the L? in-time estimates of the boundary directly from Proposition
4.1. But, we can deduce those L? in-time estimates by projecting the momentum
equation onto the divergence-free space and following the arguments in section 2.
Having solved the linearized problem, we reverse our steps and obtain a solution of
the original problem. In section 6, we present proofs of results in section 2. The
main result of this paper is the following.

Theorem 1.3. Suppose vg € H? and ng € H3. If initial data are sufficiently small,

then there is a unique, global-in-time solution (v,n,p) to (NSF) such that
(v, m I < Mlvollz2 + o]l a2,

where

(v, Il = ol ez + vl 22z + Il oo g + IV (0= F ()l 262 + 1V Pl 212 -
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Notations: e (f,g) = /fng, e ¢ > 0 is the size of the initial data.
Vi
).

V1+|Vn?
e 7 is the harmonic extension operator, also denoted by #(f) = f, extending
functions defined on Sy to H! harmonic functions on  with zero Neumann bound-
ary condition on Spg.

e A < B means there is a constant C' such that A < CB. A< B+ %D means there
is a constant C such that A < C'B + %D.

e V) is a tangential derivative along the z — y plane.

en-T, -n= Zni(vi,j + vj’i)nj.

2]

1
o U, U >= 3 / (um + uj,i)(um + ’U,j)i)d’l), F(n) =V (
Q

2. A priori estimate on the moving domain. In this section we will establish
the a priori estimate on the moving domain. The basic L? estimate can be easily
obtained by multiplying the momentum equation by v and integrating the equation
in the spatial variables. Since we cannot take usual partial derivatives to the equa-
tions on the moving domain, we need to take a special differential operator which is
derived from the new expression of the momentum equation. Here, we only present
a sketch of the arguments. For details, see section 6.

Theorem 2.1. Let vg € H? and ny € H3. If initial data are sufficiently small,
then a global-in-time solution (v,n,p) satisfies

1@, m oIS voll e + llmoll s + (11w, m o).

1. Basic energy estimate. We apply the energy method to (NSF) in the phys-
ical domain. We multiply the momentum equation by v and integrate over €2;.

0=/ \I2dV+/ ~V - (v[v[*)dV — /Av odV + | Vp-vdV
o, 2dt o

1 d 2 1 A~ 2 A 2
V—-- . dS+ - . dS .
=i v =5 [ w-atas g [ @ (21)
1
+ = |Ui,j + Uj7i|2dV — (U@j + vj7i)njvid5 + / pn;v;dS.
2 Q4 O 00

From the boundary condition of the pressure on the free surface, we obtain that

2dt/ [v]2dV + = / |Ui,j+”j,i2dv+/émt(v‘ﬁ)(77F(n))ds0~ (2.2)

Nt

VIV

1
|’U|2dV—|— 5/ |vi,j +vj,i|2dV—|—
Q. Q

Since (v - ) =

1d

S F(n))dS = 0. (2.3)

Tt
="
09, v/ 1+ |V77|2(

By the change of variables, we can replace the last term in (2.3) by

Mt 1 d/ 9
——(n—F dsS =-— + (/14 |Vn|2 — 1)dzdy
0, Trivne |Vn\2(] () 2 dt Ul ( [V )

24 [Vl (24)
= g [ 7
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from which we can rewrite the equation (2.2) as

d 2 / / 2, [V|?
v[#dV + Vi —————dxdy =0. (2.5
i Jo v [ e i+ ey =0, (25)

We mtegrate the equation (2.5) in-time. By Korn’s inequality (Lemma 6.6), we
replace the symmetric part of the gradient of velocity field by the full derivative.

V|2
v(t)|22 + nt22+/ S\ y+// Vol?dVds <e. (2.6
o)z + In()I7 = 1+|V77|2 |Vol? (2.6)

To conclude the basic L? estimate, we need to show that |[Vn]||pe is uniformed
bounded for all time, and this will be established by higher energy estimates. Under
this boundedness of 1, we can obtain the basic L? bound:

[l Zee 2 + 1V0lI72 0 + InlEe 2 + [ VllT0 2 S € (2.7)

2.2. New formulation of the momentum equation. Now, we use the vec-
tor field decomposition method to rewrite the momentum equation in such a way
that the pressure in the fluid body can be expressed as the harmonic extension
of the pressure on the boundary by projecting the momentum equation onto the
divergence-free space. A similar projection has been used in treating the incom-
pressible Navier-Stokes equations on a fixed domain, where the pressure term has
no effect on the projected equation. But, on a moving domain, parts of the pressure
on the boundary still remain in the projected equation.

To this end, let us start with the Hodge decomposition. Any vector field X in
can be written as a sum of a divergence-free vector field and a gradient: X = u+V¢.
From the identity

/u-V¢dV+/(V~u)¢dV: (u- 7)o,
Q Q a0

we conclude that u is of divergence-free and u -7 = 0 on Sp is L? orthogonal to
V¢ with ¢ = 0 on Sp. We denote u by PX. Here, we list two properties of the
operator P. For the proof, see [3].

Lemma 2.2. (1) It is a bounded operator on H®.
(2) If ¢ € HY, then P(V¢) = VA (r), where ¢ =7 on Sp.

In our problem, the velocity field v and its time derivative v; are in the range
of P. Since the pressure does not vanish on Sg, P(Vp) # 0. We take P to the
momentum equation. Then,

P(Dw) + v+ VH(n—Fn) =0, dv=-PAv+VH(n -T,-n). (2.8)

The second order differential operator o7 satisfies a nice integration property: for
divergence-free vector fields v, w,

/ (- w)dV = / W (“PAv+ VAT, 7)) =< v,0>.  (29)
Q Q

We need this nonnegative property of the operator &/ to obtain higher energy
estimates in this section. By taking the divergence to the original equation, the
Lagrangian multiplier p,, can be expressed in terms of P as Vp, , = (I — P)Vp,
and it satisfies the following elliptic system:
—Apvﬂ, = (%m@ivj in Qt,
{ p=0 on Sp, Vp-a=—(Av)-n on Sg,
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where the last boundary condition is obtained by taking the inner product to the
equation with the normal vector at the bottom.

2.3. Regularity of the boundary. We study the pressure to obtain the regularity
of the boundary 7. Since we will apply the second order differential operator o
to (2.8), we assume that the velocity field v belongs to L H? N L7 H3, from which
Vp € L?H}.

Let us assume that n € L H* N L2HY. We have two harmonic functions solving
the following elliptic equations. First,

(B1) —Ap; =0 in
p1 = (vij +v;i)nin; on Sp, 7-Vp =0 on Sg.

3 3
Since Vv € Lng;z on Sp, Vn must be at least in L°H; to guarantee that Vp €
L?H}. This implies that a > % As we will see later, n € LtOOHE is not enough to
obtain the priori estimate in Theorem 2.1. Secondly,
(E2) —Apy =0 in €y, )
pp=n—F(n) on Sp, n-Vpo=0 on Sg.

Since Vpy € LIH., t = % By these two elliptic equations, we conclude that

5 |4 5
ne LPHZ + ﬂLfHﬁ . From the evolution equation of 1, we deduce that n; € LfH,? ,

7
and combined with n € L? HZ , this implies that € LY°H3. These higher regularity
of 1 are obtained by surface tension.

Now, we rewrite (2.8) as a sum of linear and nonlinear terms.

v+ v+ VI (n— Aon) = —P(v- Vo) + VA (—Aon + F(n))
V| Vnl? )

VIHIVP( 4+ 1+ [Vi[?)

The right-hand side of (2.10) is derivatives of quadratic nonlinear terms. By the
regularity v € L H> N L?H3 and n € L H2 N LfHé, the right-hand side of (2.10)
is in V(L?H?). Conversely, if the right-hand side of (2.10) is in V(L?H?2), then we
can take two derivatives to (2.10). By acting the second order differential operator
o/ to (2.10), we can establish exactly the same regularity mentioned before, and we
can make the argument close.

(2.10)

—PV-(v®@v)+ VIA(

2.4. Higher energy estimate. We go back to (2.8). We cannot take the usual
partial derivatives to the system because it is not translation-invariant under the
influence of the moving boundary. To obtain higher energy estimates, we need
to use the structure of the equation. Here’s one example: suppose that the heat
equation is posed on a fixed domain. We can take 0; to the equation because the
equation is translation-invariant in-time. From the equation, we see that A has the
same effect of 0, and therefore, we ca obtain higher energy bounds by applying A
to the equation. In (2.8), the material derivative, Dy = 9; + v - V, corresponds to
&/ so that we can apply the second order differential operator < to (2.8) to obtain
higher energy estimates. Since &/ does not commute with the projection P,

o (D) + o (4v) + o (VA (1 — F(n))) = —427(’0 Vv —P(v- w)).
By commuting D; with <7,
Dy(v) + A (Fv) + A (VH(n—F(n))) =Dy, v — /(I —P)v-Vou. (2.11)
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where o (VA — F(n))) = wf(ﬁ T P () n) We multiply (2.11) by &/v
and integrate over €2;. Then,

1d

§%||%v|\%2+%<42{v,42/1}>— %v-;z/(v~Vv—IP’(v~Vv)>dV

o (2.12)

= / Dy /o vV + | /v VA (- Tospypiy - 7)dV.
Q

Q¢

Integrating (2.12) in-time,
t t
| v(t)|| 22 +/ < v, v >ds — / / A - ,Q/(v Vo —P(v- Vv))dVds
0 0 Ja,

t t
Se+ / / Dy, /v - /vdVds + / v VA (- Tgp iy - ) dV ds.
0 JQg 0 JQg
(2.13)

First of all, we estimate the following term:

t
/ / A0 VH (7 Tostyri) - 1) dVds.
0 JQg

Since we need to estimate 1 in L H2, we single out non-negative terms with higher
order error terms.

%v-v%(ﬁ-Tvam)) n) = / (ﬁ-%v)(WTvmw(n)) ”)
Q SF

B0t A o(n— Aom) + (o) (2.14)

B o0, V14 |Vnl?
_1d 2 2
= 5%/1%2 (\Aom + VA7 )dxdy—i—(oz).
By (2.14), we can rewrite (2.13) as
¢
/v ()]Z- +/0 < v, v > ds+[|Aon(t) |22 + [[VAon(1)] 2
¢ ¢
56—1—/ / [Dt,%]v-%vdVds—/ (a)ds (2.15)
0o Ja, 0

t
—I-/ / A - 42/(1) -Vu—P(v- Vv))dVds.
0o Ja,
Next, we estimate the last integral in (2.15). By Lemma 6.3 and Corollary 6.4,

v ([=P)(v- Vo)aV S 0] 2]/ (v- Vv = P(v- Tv)) 12
& . . (2.16)
S lvlzz + 510%(0 - Vo)llze SHIPIIT + S IVarvllze,

where we define a norm ||| - ||| as

oIl = lvllzeerz + | F vl Loz + VO[22 + V0| 212
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Combining (2.15) and (2.16), with the basic energy estimate (2.7), we have

[0l 2 + VoI55 + et ol s + [ < fo,ef0 > dt+ il o

| (2.17)

56+(// m.([Dt,mv)dvczt]+‘/(a)dt‘+|||v|||4+§||vm||iz.
Qs

We have two more terms to be estimated: the commutator term [Dy, o/] and (o).
In this section we only present sketches of proofs and for details, see section 6.

Proposition 2.3. Commutator Estimate.
1
| v (o aoavar il + 5190l ;. (2.18)
Proposition 2.4. Estimation of («).

/«mﬁsHmﬁfﬁ(MMP+HV%%n—Fm»ﬁﬂg)+MMW(vamﬁm}zw>

To prove Proposition 2.4, we need the following estimate. For details, see section
6.

Proposition 2.5. Estimation of HWHZL?FQ + |IVH#(n — F(n))H%%H%
o2y + 192201 — FOD) B
S et Il ey (10112 + 19500 = FO) s ) + ollor 2

In the right-hand side of (2.17), we have the full derivative of &7v, while we only
have the symmetric part of &7v in the left-hand side of (2.17). Therefore, we need

(2.20)

1
a Korn-type inequality to move §||Vsz/v||%2 in the right-hand side of (2.17) to the
left-hand side of (2.17).

Proposition 2.6. Korn-type Inequality.

~

1
IV.a/v|72 ;2 </ < v, v >dt+||l||* + IV o]z,
V(0 — F )22 .
Now, we can derive the energy bound in Theorem 2.1. By Proposition 2.6, we
can replace |[Va/v|?,,, by / < v, 9/v > dt in (2.17). By Proposition 2.5,
loellZa s + 1950 = F)IBa g + ol + Il
2 2 2 2 2 (2.22)
< et (oll + 113 s + a2y + 1970 = D22y )
where € = ||v||3;2 + ||m0/|%s- By Lemma 6.3 and Corollary 6.4, (2.17) implies
ol sz + IVOIL2 2 + 02 13 + 1V (0 = F) 12 g
2 2 2 2 2 (2.23)
Set (”UHLfCHg + ||VU||L§H5 + ||77||L;>°Hg + |V (n— F(n))HLgH;) :

This completes the proof of Theorem 2.1.
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3. Existence and uniqueness on the equilibrium domain. In this section we
prove the main result, Theorem 1.3, as we mentioned in the introduction, by using
Beale’s method [4] of solving the problem on the equilibrium domain. Since we will
project the equation onto the divergence-free space to obtain L? in-time bounds of
the boundary, we need to keep the divergence-free condition to the velocity field
on the equilibrium domain. Therefore, the transformation from the moving domain
into the equilibrium domain is given by the change of variables in a way that the
divergence-free condition is preserved. Let us briefly explain the idea of proof. After
deriving the system of equations on the equilibrium domain, we will obtain the a
priori estimate under the assumption that we can solve the linearized problem.
Once we obtain the a priori estimate, we can iterate the system to finish the proof.
The solvability of the linearized problem will be the subject of the next section.
To this end, we first define a map

a(t) 1 Q= {(.’I},y72’); -1<z< 0} - {(m,y7z/); 1< Z/ < n(xayvt)}a
by using the harmonic extension 77 of 7 in the following way:
0(z,y,2,1) = (z,y,0(z,y,t) + 2(1 —i(z,y,1))). (3.1)

In order 0 to be a diffeomorphism, 7 should be small for all time. This smallness
condition will be achieved by higher energy estimates. We define v on 6(2) by

bi,; _ _
J’ij :Oéij’LUj, J = 177]+az77(172), df = (014)

V; =

Then, v is divergence-free in 8(Q) if and only if w has the same property in 2. We
replace the system of equations of v with that of w.

vig = GO (curwr),  vie = aijwjs + ogw; + (0750 (sw;),

where ¢ = (df)~! and " denotes derivatives in ¢. Setting ¢ = p o 6, the other three
terms in the Navier-Stokes equations are of the form

QWi Cm Om (i) — Cij Ok (G Om (tigwy)) + CriOrg. (3.2)
Multiplying (3.2) by (a;;) ™!, we have the following system of equations:
wy — Aw + Vg = f(7j,v,Vq). (3.3)
The normal boundary condition becomes
Vn
VI+IViP?

where N = fvo 6. Let T} = (1,0,0.m), Ty = (0,1,0yn). Taking the inner product
to (3.4) with 77, Ty, and N, we obtain that

gN; — (Cljal(aikwk> + Cmiam(ajkwk))Nj = (77 -V ( ))Nia (3.4)

w3 +ws; = gi(n,w), q—wsz=mn— LN+ gs, (3.5)

where g3 = Anp — F(n) + gé, gé is quadratic in n and w. Finally, the evolution
equation of n can be obtained in terms of the new velocity field on Q:

n =ws on {z=0} (3.6)
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In sum, we have the following linearized system of equations on the equilibrium
domain:
wy —Aw+Vg=f in €
V-w=0 in €,
(LNSF){ wis+ws;=g¢g; on {z=0}, m=ws on {z=0},
q=wssz+n—An+gs on {z=0}
w=0 on {z=-1},
and the corresponding compatibility conditions of the initial data on the equilibrium
domain are given by
V-wg=0 in £,
wo=0 on {z=-1},
w(0);3 +w(0)3,; = gi(0), q(0) =w(0)33+g5(0) on {z=0}

Suppose that (LNSF) is solvable. (We will prove the solvability of the linearized
problem in section 4.) Let

I(w;m, DI = llwlloemz + lwllzz iz + lwellzay + 0l mz + Vel Lz -

Then, by Proposition 4.1,

Il S € U lliy + elzoz + il 3+ Dol oy D2y 39
Now, we calculate nonlinear terms. Principal parts are given by
f~ w3+ V2V + V2wV + ViVe, g~ VnVw+V(VnVn).  (3.8)
We only need to estimate the highest order terms.
IV fllzzez S N10(wVPn) + (V2 Vw) + d(VwVi) + (VaVi)l| a2
SIVeV2ill 2z + 1wV il 2z + IVoVall 22 + [IV20V27] L2 2
+ V2wVl 22 + V20Vl 22 +V2aVill 22 + [VaV27lll 2212
SIVwllz e IVPl ez + lwllze oo V47 22 2
Hllwl 2 s Vil ez + lwllge 2 V27l L2 1o
+ IVl 222 IVl L e + 1Vl 222 IVl Lo e

By Lemma 6.7, we can replace || V*7|| 122 and [|V?7]| 12 o by |V (n—20n)| 2 11 -
We can do the same calculation to || f¢[| ;2 2. Hence, || fll 121+ fell 222 S |l[(w,n, @)1

We do the same calculation to g.
102 gl 12 r2) S 102 (V) Vi + Vwd? (V) + V2 (V)| 11 (e
SN2 (Vo ez ry IVl o= + V0] 2210 () 03l e 2 (3.10)
+ 1Vl gz 10701l 1 13-
Therefore, HgHL 3 < |||(w,n,q)|||>. Again, we can do the same calculation to

7HZ (R?)

ol -3 an gl

conclude that

. 2 5
e el g ol g S 1l @] From (3.7), we

5

11w, n, I < €+ (Il (w,n, g)l1)*.

Once we obtain the above energy estimate on the fixed domain, we can iterate
the system. The first step is to define the first iteration (w!,n',¢') in terms of the
initial data. Then, we can define the second step (w?,n?,¢?), so on. Let p(t) be a
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nice cut-off function in-time such that p(0) = 1. u(z,y) is a €>° function on R
Then n! is defined as n* = (noxp(z,y))p(t). We do the same procedure to define the
first velocity field w'. Since wy is defined on the channel €2, we restrict wq interior
of the domain. We choose a ¥ function % supported in —% <z < —i. Let
o(x,y, 2z) be a nice function such that ¢ = 0 outside of the domain. Let A(z,y, 2) be
a € function on R3. Then, we define w! as w! = ((wo) * A(x,y, 2))d(x,y, 2)p(t).
Finally, we define the pressure as ¢' = jf(wéS +n' — Anl). Then, for n > 1, we

iterate the system of equations in the following manner:

w® — Aw™ + Vg™ = f(w™ ™ gmTl) in Q,
V-w™=0 in €,

(LNSE™) ¢ wiy +wy; = gi(w™ ',n™~ ") on {z=0},
qm = wg,lii + 77m - Aoﬁm + g3(wm717nm71) on {Z = 0}7
N =wy on {z=0}, w"=0 on {z=-1}.

From the a priori estimate in Proposition 4.1,
™ 7™, g™ S e+ [I(w™ = n™ =t g™ HI[]%

Therefore, we conclude that {||[(w™, 7™, ¢™)|||} are uniformly bounded if the initial
data is small enough. By taking difference of two sequences, we can show that
{(wm, nm, qm)} is a Cauchy sequence with respect to the norm defined in Theorem
1.3. Therefore, we can obtain a unique, global-in-time solution to (LNSF) if initial
data is small enough in H? by the contraction mapping theorem. This completes
the proof of Theorem 1.3. The dependence on the initial data of the boundary ng
occurs when we define the first iteration.

4. Solvability of (LNSF). In this section we study the linearized problem (LNSF)
defined on the equilibrium domain = {(a:,y, z); -1l <z < O}. When we define
the new system of equations on {2 in section 3, we made the new velocity field of
divergence-free. We need to keep the divergence-free condition to the velocity field
from two reasons. First of all, we need to remove the interior pressure in the weak
formulation because we only know the explicit form of the pressure at the boundary.
By the integration by parts,

(Vp,¢) = /a p(o-)dS — (0.7 - ).

Therefore, to remove (p,V - ¢) we have to define test functions in the divergence-
free space. Secondly, as we remark at the end of this section, we can estimate the
boundary in L? in-time by projecting the momentum equation onto the divergence-
free space. (See Remark 3).

In this section we first prove that (LNSF) is solvable weakly in L? for given initial
data and for given external forces f and g, and then improve the regularity of weak
solutions under higher regularity of the initial data and (f, g) in Proposition 4.1. In
this section the upper index means the third component of a vector field.

4.1. Weak formulation. First, we define a function space where weak solutions
will be defined. For any fixed time interval [0, 7] with T' < oo,

t t

Y (T) = {v € L?H!: Vw=0, / v3ds € L°L2(R?), / Vovtds € L‘;OLi(RQ)},
0 0

with v = 0 on Sp. The divergence-free condition is expressed in the distributional

form, i.e. v is orthogonal to gradients of test functions which vanish on Sg. This
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space is almost the same space used for the Navier-Stokes equations in a fixed

t t
domain except for the boundary terms: / v3ds, / Vov3ds.
0 0

For test functions, we define a separable space ¥ as
— {v €H!:V-v=0, v=0 on Sy, o°cL2(R?), Vo'e LZ(RQ)}.

We define a space for vy:

’

W(T):{’UELEH;l;V.U:O, v=0 on SB}

We say that (w,w;) € ¥(T) x L2(0,T;¥") is a weak solution of (LNSF) if for all
vEY,V-w=0 w(-,0)=wy € L?hold and

(we, v)+ < w,v > —1—/R2 ((/Ot w3d8)v3) + /R2 (Vo(/ot w3ds) . (Vov3)) (4.1)
= (f,v) + (g, v).

4.2. Existence of weak solutions. Here, we want to address the following exis-
tence theorem:
For any wg € L?, f € L7L2(2), g € L7L2(R?), there exists a weak solution
(w,wy) € ¥ (T) x ¥ (T) such that w(-,0) = wo.

The idea of obtaining a weak solution is quite standard. Since ¥ is separable,
we can use the Galerkin approximation to the equation, from which we can solve
an ODE to decide the coefficients in a fixed time interval [0,7]. Then, we obtain
the uniform energy estimate to these approximated equations, from which we can
pass to the limit. By taking a cut-off function in-time, we can prove that a weak
solution achieves the initial data in L.

» Galerkin Approximation: Since ¥ is separable, there exists an orthogonal

basis {¢k} in L2. By approximating w by w,,(t) = Z M (t)p;, we want to select
j=1
the coefficients M, (¢) such that A, (0) = (wo, ¢;) and

t t

(OpWins @)+ < Win, B > —|—// wf,@?dxds—!—/vo/ wf’n . Voqﬁ?da@ds
0 0

= (f,9;) + (9,9;).

We define integrals as

(4.2)

Epj =< ¢m,¢; >, Hp; :/122(¢f‘n)(¢§)dxdy, Lo, :/RQ Vo(@r) - (Voo])ddy,

Fy=(f.05), Gj=(9,¢;)-
Since (ywm, ¢j) = M., (4.2) is reduced to an ODE,

t t
MN 4 B X+ Hpji / M (8)ds + L / N (s)ds = F; + Gj,
0 0
which is subject to the initial data M, (0) = (wo,¢;). By the standard existence

theory for ODE, there exists a unique absolutely continuous function Ay, (t) = {7, :
j: 1727"' 7m}'
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» Energy estimate: For each m=1,2,---,

t t
Il ez + V0l By +11 | whdsliEss + 19 / wh,ds|} e 12

(4.3)
S llwollzs + 11722 + llallZs e
Proof. We multiply (4.2) by M, (t) and sum for j = 1,2,--- ,m.
(W, Win )+ < Wiy Wiy > —I—/ / 3 Vdxds
/(VO/O w?)) - Vo(w?,)dzds
;thmeLz-i- < Wiy Wy, > +%%(/ |(/Ot wf’nds)\gdac) (4.4)

ey Y ds) [2dudy)
+2dt /R O/w ) dudy
1
= (fywm) + (9, wm) S |F172 + lgllZe + 5 lwmllZe.
Since w = 0 at the bottom, we can replace ||wl||7.;, in the last line of (4.4) by

||Vw||2L$Li. Integrating (4.4) in-time, we obtain (4.3).‘ O

» Passing to the limit: From the energy estimate, we know that {wm} is uni-
formly bounded in L{°L2 N LZH}. Therefore, there exists a subsequence, still de-
noted by {wm}, converging to w for the weak star topology in L{°L2 and for the

weak topology in L?H}. Since {wm} is bounded in ¥ (T'), for the weak star topol-
t t

¢ t
ogy in L{°HY, (/ w?,ds) and (VO/ w3 ds) converge to/ w3ds and VO/ w3ds,
0

0 0 0
respectively. We multiply (4.2) v € 2(0,T) such that ¥(T) = 0, and integrate in-
time. By the integration by parts in-time,

-/ " (s 05)000t + / U< ()6 > d 4 / /. /0 whds) (0(t)¢2) dudt

/ /R Vol / wh,ds) - ((1)Vod?)dudt

(@600 + [ ((1.6)+ (00

Since wy, (0) — wq in L?, by letting m — oo in (4.5),

—/T(wng)@twdt—i—/ < w, Pt ¢]>+/ // (t)¢5)dxdt
/ AL / w?) - ((8) Vo dadt (4.6)

=(wo, ¢;)¥ (0 )+/ ((f,¢j)+(g,¢j))dt

0
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Since (4.6) holds for a finite linear combination of ¢;s, it also holds for all v € 7.
Therefore,

_/T(u) v)atz/}dt—i—/ < w,vp(t) >dt+/ /R/O wids) (V)i () dwdt

/ / Vo / wids) - (Vou®) () dwdt (47)
R? 0
— o0+ [ ((0)+@0))at

0

from which we can achieve the following equality,

s 3 "3 (Vo3 dr
(wt,v)+ < w,v > +/R2(/0 w?ds) (v )da:—&—/Rz Vo(/o w?ds) - (Vov°)d (4.8)
=(f;v) + (9,v)

in the distribution sense on (0, 7). It remains to show that w(0) = wq in L2 We
multiply (4.8) by %(t), and integrate in-time.

_/T(w v)(')tz/zdt—i—/ < w, vip(t) >dt+/ /R2 /0 wds) (v®)e(t)dadt

/ /R Vol / wids) - (Vou?)ob(t)dadt (4.9)
= w00+ [ ((F0)+ (0.0))e

0
Comparing (4.7) with (4.9), we see that (wo —w(0),v)y(0) = 0 for each v € ¥". We
choose 9 such that ¥(0) # 0. Then w(0) = wy. This completes the existence part.

Remark 1. Since the trace theorem does not hold in this level of the regularity
of weak solutions, weak solutions are not in L2(0,T; %) so that we cannot take the
difference of two weak solutions to show that a weak solution is unique. We can
show uniqueness after proving the regularity result in Proposition 4.1.

4.3. Higher regularity. In this section we improve the regularity of weak solu-
tions under higher regularity of initial data and external forces. Since the domain is
translation-invariant in the horizontal direction, we need to take tangential deriva-
tives to the equation to obtain energy bounds of tangential derivatives. Other
bounds can be obtained from the divergence-free condition and from the momen-
tum equation. As we will see in the proof, we need to control w; to obtain estimates
of the full derivatives of the velocity field, and these estimates can be established
by solving an elliptic problem in the proof of Proposition 4.1.

Proposition 4.1. Suppose that (w,w;) € ¥ (T)x ¥ (T) is a weak solution such that
the initial data satisfies the compatibility condition. Letwo € H?, f € LHINL{ L2,

3 .
g € L7H? ﬂLt‘X’H_%. Then, w € L°H2 N LIH2, n € L°H? and Vq € L?H}.
Moreover, (w,n,p) satisfies the following energy bound:

|wllzeemrz + IVl 22 + 10llge iz + [Vl L2 + well L2

S lwollaze + llnollzza + 1 ey + M Fellzzrs +llgll , 5+ ||gt|| -3+ Hgll2
t t

1.
Hy ©HZ2
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Proof. 1t consists of 7 steps.
e Step 1. L? estimate: we multiply the momentum equation of (LNSF) by w
and integrate over (2. By the integration by parts,
1d
2dt
From the boundary condition,

||w|\%2+ <w,w > +(q —ws 3, w3) — (Wi, 9;) = (f, w). (4.10)

1d
(@ — w3 3,w3) = (n—Aon + g3, w3) = 5@(”””%2 + ||V77||%2) + (g3, w3). (4.11)

By the trace theorem and Young’s inequality, the last term in (4.11) can be esti-
mated as

1 1 1
(giws) S llglzz + 5llwlzeee S lgllz: + S llwllz: + 5 1Vwlze. (4.12)

By (4.11) and (4.12), (4.10) can be estimated by

1d

57 (lwl3e + i3 + 1V9ll3: )+ < w,w >

2dt (4.13)

2 2 1 2 1 2 .
S lgh3e + 113 + 5 hwle + 51wl
Integrating (4.13) in-time,
Jullirs + [ <w,w> dt+ alers + Vol

(4.14)

1 1
Set 1 lizre +lolizr: + 5lwliz e + 5IVwlizp,-

By Korn’s inequality, we can replace the symmetric part of Vw in the left-hand side
of (4.14) by the full derivative. Since w = 0 at the bottom, we can replace ||w|2,,,
tHx

in the right-hand side of (4.14) by ||[Vwl|| Therefore, we have

2

Ly
2 2 2 2 2 2

lwliee 2 + IVwlzz gz +InllTe 2 + 1IVIllie sz S €+ £ 17202 + llgllzz - (4.15)

e Step 2. H! estimate: next, we obtain bounds of derivatives by following

the same argument in step 1. We multiply the momentum equation by Agw and

integrate in the spatial variables. Since Vow = 0 at the bottom, boundary terms

on z = 0 only are involved when we do the integration by parts. By the integration
by parts,

d
a”VowHiz—F < Vow, Vow > +(q — w373,A0w3) 5 ||f||%2 (416)
From the boundary condition,

d

£||Vow||i2+ < Vow,Vow > —|—(T] — AQ?’]7 Aowg) + (Vogg,, Vo’w3) ,S ||fH%2 (4.17)

By the duality argument in (Vogs, Vows) and Young’s inequality,
d d
IVowl3a+ < Vow, Vow > +2 (IVonli + [ V3nl3:)

1
+ §HV0’W||2< by T I1£1172 (4.18)

2
S [ ¥ogsll, 2 b

1
2

1
S ||9||il% + gHvowﬂiI%(m) +1£1Ze-
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1 2 1 2
By the trace theorem, §HV0w||H%(R2) S §||V0w||H1. Therefore,

d

= (IVowlZ + 19nl22 + 929113 )+ < Vow, Vow >
) (4.19)

< 5(IV0Vul2 + [ Vowl2) + 1713 + gl 5.

By Korn’s inequality, we can move the velocity terms in the right-hand side of (4.19)
to the left-hand side. Integrating (4.19) in-time,

V0wl s + [V0ValZs o + 1900300z + V2003012

< 2 2
S et Iz +lol?,

1
2
T

(4.20)

We need to obtain missing terms ||w133[z212, [[we,33]|L222 and [[wsss]/222. Since
V-w =0, ||wss3]r2 < 2[|VoVwl| 2. From the equation w; 33 = —w; j; +w;+ + 0iq,
we can replace ||VoVw| 2 by ||V2w]|| 12, by adding |Jw;| r2 +]/iq|| to the right-hand
side of (4.20). Vq = wy — Aw + f implies that

1054l7212 < lwselZope + IVoVwslZope + 11501212

4.21
S s + W30z +al?, 3 + V0wl (421
i

But, we cannot estimate 9;q in terms of ||0s3w;||r2, ¢ = 1,2 because we cannot
bound ||O53w;||z2 in terms of |[VoVw||p2. Therefore, we need to keep the pressure
term in the right-hand side of (4.20) such that

IVowlie 2 + Vw0l 12 + (VM7 00 111

4.22
S e+ 1Bz +lol?, (4.22)

s+ wellZapz + 1VallZe -

We will obtain ||wt||2L%L2 in step 4, and ||Vq||%%Li in step 6.
e Step 3. H? estimate: we take one more derivative to the momentum equation.
We multiply the momentum equation by AZw and integrate over €.

(wi, Ajw) + (—Aw, Adw) + (Vg, Adw) = (f, Ajw). (4.23)
By the integration by parts,
d
ZlA0wlia+ < Aow, Agw > +(q = wy 3, Ajws) S Vo[- (4.24)
Using the same arguments in step 2,
d
= (I1a0wlZ + 192132 + 1V3nl3: ) + IV (20w) 25,2 S IVFI3: + llgl, 3 (4:25)

As before, we can replace ||V(A0w)\|%?Li by HV3w||2L?Li, by adding Hth||2L?L§ +
[V2q||32,. to the right-hand side of (4.25). Integrating (4.25) in-time,
tHx
180wlZge s + IVPwIZ2 2 + 1V0 00 111

2 2 2 2 112 (426)
S N PR R A PR N

We will obtain ||[Vw||3,,, in step 5, and [[V2¢||3.,. in step 6.
tHx tHx
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o Step 4. L? estimate of wy: we need to obtain the energy bound |[w[%,,, +
tx

||th||%% L2 First, we multiply the momentum equation by w; and integrate over
Q.

(wi, we) + (—Aw, wy) + (Vg we) = (f, we). (4.27)

By the integration by parts,

1d
lwellzz + 57 < ww > +(g —wag,ws0) S [1fI72- (4.28)

From the boundary condition,

1d
llwel| 32 + Sdt <w,w > +(n—Aon+ g3, ws) S I1£1172- (4.29)

We estimate boundary terms.

(1= Bonme) = —(n = Aon,me) = InellZz — IVl Z- (4.30)

d
t
By the trace theorem,
2 1 2 2 1 2 1 2
(93, w3,0) S Ng3llz2(rey + 7w ellz2(re) S 1193llze + Fllwsellzz + 7 Vws[72(4.31)
(R?) Ty (R?) 4 4
By (4.30) and (4.31), (4.29) can be written as

1d d
llwel| 72 + Sdt <w,w > +$(77 — Aon, )

. ) (4.32)
S + lgslze + fllwsllZe + 7 1VwsllZs.
Integrating (4.32) in-time,
||wt||i§Lg + V| Eee 12
et 1 IBags + 01— Aommllzess + g2 s
1
el Zzre + 1VmelZzs + lollfe s + 4 IIVwslze (4.33)

1
St I s + gl + Imless + ol g
1
By + )2 s + 5V o3

We need to estimate terms HntHQL?OLQ + 17¢l17 251 in the right-hand side of (4.33).
t tiiz
By the trace theorem and Young’s inequality,

1
||77t||%chg = ||w3|‘%tooLg(Rz) S ||w||%g°Lg + guv’w”%g%ga
2 _ 2 < 2 1 Vwl2
||Tlt||Lng - Hw3HL$L%(R2) ~ Hw”L%Li + 5” wHLfL%?

1
||V77t||2LgL3 = ||Vw3||2LgLi(Rz) S HszLng + §||V2WH%3L3~
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Therefore, we have the following energy bound:

||wt||2L§Lg + V| Zse 2
1 1
Se+ I l2z2 + 5l nz + ||9||;H§ + 5 IVwlizm + lwllZs 2

1
+ 5V

72+ wlfe e (4.34)
1 1
Se+ 172 p2 + 5\\77||2L;>0Hg + ||9||;H§ + §\|Vw||igH; +llwlZs
1
+ §||tht||2Lz + [[wllF e r2

1
where we use the divergence-free condition to control —||Vws |32 in terms of the

tangential derivatives. By following step 1, we can replace the lower order terms
wl2,,. + Hw||2L§,QL2 by forcing terms. Therefore, we have
t~x x

lwellZ2 2 + 1Vwl|Eee 12
1 1 1 (4.35)
2 2 2 2 2
Setflzee + 5lnlzeenz + ||9||L% 3t S IVwllzz g + 5l Dnwe|[ze.
e Step 5. H! estimate of w;: let us take one more derivative. We multiply the

momentum equation by Agw;. By integrating in the spatial variables,
1d
||V0wt||%2 + 5@ < Vo’w, VO’LU > +(q — w33, Aowgyt) = (f7 Aowt). (436)

By the same method in step 2 and step 4, we obtain that

IVowil| 722 + VoVl 2

1 1 (4.37)
2 2 2 2, 112
Set VAL + §||V77||L;>°Hg + HQHL%H? + §||V wl|Zz -
But, we cannot move to the next equation (4.38) directly from (4.37),
IVwellZs e + IVoVw|Ze s
(4.38)

1 1
S eIV By + 51903 mz + I 5+ 51V 0y
215

To obtain (4.38), we need take the time derivative to the momentum equation.

wy — Awg + Vi = fr. (4.39)
By multiplying (4.39) by w;, and integrating over the domain,
1d
5@\\%“%2-# < wg,we > H(wszze + 10— Done + 93,6, w3e) = (fr,we).  (4.40)

We can apply Korn’s inequality to the second term in the left-hand side of (4.40).
Skipping the details, we have the following estimate.

d
ﬁ(llwtlliz + wsllf (r2)) + 1 Vee]1Z:

S IFlZe + llgel?, - (4.41)

1 1
ol + I VwnlEa + |(ws e, ws.0)

1
2

)

1
+ §||th||%2 + ‘(w3,3t7w3,t)

S IAl2s + ol

1
2
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where we use Poincare’s inequality to control lower order terms by higher order
terms. Let us estimate the last term in (4.41). By the divergence-free condition,

1
S 2Vowelze + 5 Vwel7e. (4.42)

‘(w3,3t7w3,t) < ’(wl,lhw&t) + ‘(wl,ltvw&t)

But, |[Vow:||2. can be estimated by (4.37). Therefore,
||wt||2Lt°°Lg + vatH%fLi + ||V0vw||2Lg°Lg

< 2 2
Se+IVFlzeL: + ||9||L%H§ -

2 2
+ el ze 2 + HgtHL%H—é (4.43)

1 2 Loz, 12
+ §HV77||L§°H§ + §||V wl|Zz g1

We will move the last two terms in (4.43) to the left-hand side later.

e Step 6. In step 2, and step 3, we have the pressure term in the right-hand side of
(4.22) and (4.26). Unfortunately, we cannot derive the estimations of the pressure
term from the momentum equation directly because, as we already observed in step
2, we cannot estimate ||0ssw;||r2, ¢ = 1,2 in terms of the tangential derivatives of
the velocity field. However, we can derive the energy bounds of full derivatives by
solving an elliptic problem with the aid of the estimation of the time derivative of
the velocity field. Let us consider the following system of equations:

~Aw+Vg=F in Q F=f+w€LlH]
V-w=0 in Q,
w=0 on {z=-1},
w;; +wj; =g, on {z=0},
from which we can show that a weak solution (w, ¢) satisfies the following estimate:

lwllzzms + 1IVallzm: SN Fllzzm + llwellzm + llgll (4.44)

L2l (r2)'
For the proof, see Lemma 3.3 [3]. In the above system of equations, we have g; # 0,
i =1,2, and these terms are easily handled by using argument in Lemma 3.3 [4].

e Step 7. In the final step we deal with ||wi’33||2L;,QH1 by reformulating the momen-
tum equation by projecting it onto the divergence;frére space using the same method
as in the problem on the moving domain. No details will be provided in this step,
and we are only concerned with ||.o7 w||2L$° 12> Which is given by

oo
Hdw”%gw:g "‘/ < dw, dw>dt S e+ Hth%fH; + ||VQ||2L§H; + ||f||i§H;(4~45)
0 , ,

By using the same elliptic estimate used in step 6, with the additional term ||g||> .,
LEHE
we have f
ol S e+ ol + 190030 + 1013 + gl 5o (446)
t x

In sum, collecting all terms from step 1 to step 7, we obtain that

lwllzeemz + [Vwllpz gz + [I0llLee s + [Vl L2 + lwill L2 mn

Sllwollmz + [Inollme + 1 flzer + [ fell 222 (4.47)
2
gl 5+ o g+l
and this completes the proof of Proposition 4.1. O

Remark 2. Under these higher regularity, solutions are unique.
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Remark 3. In section 2, we used the vector field method to rewrite the momentum
equation to express the pressure term as the harmonic extension of the boundary
terms. Now, we take the projection IP to the momentum equation on the equilibrium
domain:

— P(Aw) + P(Vq) = P(f).
The expression
VA (n—Agn) =PVq— VI (ws3) — VA (g3)
infers that
IV (1 — Do 72 < IVall7z s + VA (w33) 72500 + VA (93)I[72 411
By Proposition 4.1,
IV (0 — Do)l|72m S €+ 1 fllLzm + gl

3.
LYHF

Therefore, we can control the boundary in L? in-time.
5. Change of variables. In this section we present details of the change of vari-
ables which is used in section 3. In section 3, we defined a map
0(t): Q={(z1,22,9); -1 <y <0} — {(x1,22,2 ) —1<2 < n(z1, z2,t)},
in terms of 77, where 7 is the harmonic extension of 7, such that
0(z1, 22,y,t) = (21, 22, (21, 22, 1) + y(1 + (21, 22,1))).
By definition,

1 0 O 1 0 0
=0 1 0|, ¢=()'= 10
B
A B J -4 -3 3
A=QQ+Y)ie,, B=0+Y)w, J=1+0+09yn(+y)
We define v on 6(2) by v; = }J w; = aj;w;. Then,
=2 =" y=Zw +§w +w
1 7 ) 2 — 7 ) 3 = 7 1 Ni 2 3-
We make replacements v; ; = Qjal(aikwk).
1 A A 1 A
o1 =01 (Fun + Fun) = F0u(Fur + ),
A B 1 A 1 1
32( wy + Jw?,) 733(3101 + jw?’)’ V1,3 = 333(jw1),
1 B A 1 B
va1 =01 (Gua+ Jus) = F0u(Guat us).
B B 1 1
32(Jw2 + Jw3> J33(Jw2 +— W ) Vg3 = 333(711}2)7
1 1
V3,1 = 5] (jAwl + jBU)Q + ’w3) — jAag(jAwl + jB’LUQ + wg),
1 1 1 1 1
V32 = a2(}14101 + ijz + w3) - jBE)g<jAw1 + ij2 + w3>7
1 1 1
v3,3 = jas<jt4w1 + ijz + ws)-

First, we take time derivative.
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1 1 vat 1
Vit = Wit = ﬁj,twi + ((9)_1)3<jwi’3 - 7J73wi> fori=1,2
1 J 1 1 J 1 N
Ui’t = JAwlfﬁAwi+JA’twl+JBw2’t {’;Bw2+J?7tw2+w3f+((9) 1)3(7
—1\/
ﬁJ’3Aw1+jA’3w1+jAw1’3)+(<9) )3(—ﬁj’gB’wg—l-jB’ng—f—ij2)3+w3,3)
Next,,we calculate the advection terms.
Vos = o (L) + Swadn( L) + Luwgdy(Lws) fori—=1,2
v-Vu;, = —w —w; —w —w; —w —w; ri=
7 7 101 7 7 7 202 7 7 7 3U3 7 7 )
v- Vg =
L 8(A +B —i—)—i—l 8<A +B -l-)—i—l 8(A +B -l-)
—w —wy+—we+w —w — w1+ — wa W —w — w1y + —wa W
FW101 Wt W2 W3 |+ w202 { Wit S Wyt Ws |+ 7 W03 | Wit W2t s

Finally, we obtain the dissipation term. We calculate A first.

1 1 A B A A 1 B
A =011+ 090+ jag(jag) — 81(733) — 82(753) — 7831 + jag(jAag) — 7832 +

B 1
733(3333)
Therefore,
1 1 1 1 1 1 1
Alvi = 3111(jwi) 45322(31102') + j?B(jaal(jwi))l— 51(311133(510;)) -
32(J 33(Jw ) J1 331(%w)+1j 33(J 33(J7~U ) 5 a32(Jw )+
jBag(jB(“)g(jwi)) fori=1,2
A B A B 1 1 A
203 =0n (jwl +Ajw21: w3) -11;522(Jw1 + 71112;- w3?4—|— Jaig‘]a?)(‘]wl +
Ajwzj w31)4) - 81gja3(Jw1 + jsz + 11:3)) - 0; (783(77“”1 gjsz—i— wi) +
733(753(7101 +wa ws)) - 3531 (jwl +w w3> + 783(783(jw1 +
E + )) _ Ea (é + E + )
w2+ ws 7052 Fw1 + Fwa +ws

We define the pressure as ¢ = p o #. Then,
1 1 1
= —=A = ——B = —0sq.
Op =01 = 3 A0z, O2p = 0pq — 5 B3q, Osp = 503¢

We substitute all terms into the Navier-Stokes equations and its boundary condi-
tions. Then, we see the quadratic nonlinear terms mentioned in section 3.

6. Proof of the a priori estimate for the free boundary problems for the
Navier-Stokes equations with surface tension.

6.1. Proof of Proposition 2.3: Commutator estimate. Since the integrand
in the right-hand side of (2.18) is cubic, we can estimate terms in L? x L* x L* or
L? x L? x L™ by using the Sobolev inequalities, which control L> norm by H?*
norm. Moreover, we have to perform the integration by parts to move derivatives to
more regular parts, and we therefore need the trace theorem to estimate boundary
terms. Finally, we need to estimate ||[V3v| 2 in terms of |[V.&/v| 2 to make the a
priori estimate closed.

Lemma 6.1. Sobolev Inequalities [1]: for a domain Q in R with a smooth bound-
ary,

W fllzs < CIALL - 1VF 1R @l < ClFllae-
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Lemma 6.2. Trace Theorem: [1] let Q be a domain in R™ having the uniform C™
regularity property and suppose there exists a simple (m,p) extension operator E

for Q. If mp<n andp <q< %, then W™P — L1(09).
Lemma 6.3. Unique solvability of an elliptic equation: if
dv=7f in Q t-T-a=0 on 09,

then, under the divergence-free condition, ||v| gr < || v||gr—2 for r = 2,3. For the
proof, see Lemma 3.3 in [3].

Corollary 6.4. Sobolev inequalities involving </ v.

1 1 1 1
(1) |0vllLz S lvli7z - [9v]l72,  (2) |v]l2 S 007 - IV (072,
(3) V3]l 2 S IV L2 + ||Vl 2.

Proof. The first inequality is derived from Lemma 6.3 and interpolations,
3 2,113 3 3
[0v][L2 S llvll72 - IV0llf2 S M0l 72 - [|970]l 7
The second inequality is obtained by the divergence-free condition of .o7'v:
1 1
| v|| 2 = (v, V) =< v, v >3< |02, - |V (0)| L.
The last inequality is obtained by taking » = 3 in Lemma 6.3. O
Lemma 6.5. Korn’s inequality: for a velocity field v vanishing at the bottom,
[v]|2: < C < v,0>.
For its proof, see Lemma 2.7 in [4].

Now, we prove Proposition 2.3. Since (&/v - Dy, &/|v) is cubic, we can distribute

L$° and L? as we want. Therefore, we expect that // v - ([Dy, & |0)dVdt is of
QS
the form (LHS)? + 1(LHS), where

2
(LHS) = [[oll2 = (Ivllzzere + |70l rrz + 1Vllizze + Vvl z2z2) - (61)
If there are no boundary terms, we can obtain the usual commutator estimate,
/ Dy, Ao~ todV < [ Vol - |v2de < [[Vollz - | /0]2
Qy

e ) (6.2)
1 3
SAVollez - [ llfz - [V(0)l22 S [Vollge - [lo7v] 72 + 5\\V(%v)\liz-

Since we have the boundary terms in the operator &/, the commutator involves
more terms. First, we expand the commutator terms as follows
[Dy, v = [Dy, —PAJv + [D, VA (0 - T. - 0)Jv = (I) + (I1).
Since 0; commutes with PA, (I) can be rewritten as
I=[v-V,-PAJv
=PAv- Yo+ (=0 V(PAV) + P(v- VA0) + PRV0-TV0))  (63)
= (II1) + (IV).
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For (IT), we commute terms successively.
(II) =Dy(VIH(n-T-n)) —VH (i -Tp,, - 1)
=VD (- T -n)+ Dy, VIF(A-T-n) —VH("-Tp,, - 1)
=VH(Di(n-T 7))+ VD, )0 - T - 1)+ [Dy, VIF (- T - 1)
—VH (1 -Tp,y 7).
The operator D; on the boundary is understood as

D,(RF) = (%{RFOU}) oul= %(RF) +v- %(RF),

where RF is the restriction of F' onto the free surface S and u is the Lagrangian

>

(6.4)

coordinate map solving % =(t,x), (0) = y. Since D;n is orthogonal to 7,
Di(i-T 1) = Dyiv- T+ i DT v+ T- Dyt
=i~ DT - = nin; DeR(vij + v5.)
=nin; R(Dy(vi,j + v5)) + mang [0y, R (vij + vji) + ning[v - V, R](vij + v,4)
=nin; (((Dtv)z‘,j + (Dyw)j.i) + ([Dr, O5]vi + [Dy, 8;]v;) (65)
+0mR(0;(vij + ;) + [v- V, R) (v ; + vjvi)>
=i - Tp,v - v+ nin;([Dy, 0j]v; + [Dy, 0;]vj) + ninjOnR(0 (vi; + vj4))
nin; (RodmR(0:(vi; + v10)) + RusR(D: (i + v4))-
After reordering terms in (6.4),
(11) = V.7 (mans (11, 9510,
+[De, 0iey) ) + VIDy, (- T - 2) + Dy, VIA (- T 1)
VA (nmjamR(az(vi,j +0;4)) + ning { RuidmR(0: (vij + v;0))  (6:6)
~ RugR(0-(vi; +v5.))} )
=(V)+(VI)+ (VII)+ (VIII).
By the identity used in Shatah-Zeng [14],
(VI) = V(A) (281} N2H (T 1)+ VA (T 7) - Av). (6.7)

Here, A~! denotes the inverse of the Laplacian with zero Dirichlet boundary con-
dition at the free surface. Therefore, (VI) is orthogonal to «/v. Finally,

(VII)=—-NVv-VH(n-T- n), (6.8)

where (+) is the matrix multiplication with a vector, not the inner product. By
adding (III) and (VII),

(III) + (VII) = V- ( —PAv+ VA (0T n)) = Vv . (6.9)
e Estimation of (III)4(VII): it is the same as (6.2).

1
/Q (ID) + (VID)) - o/odV < |Volls - vl + 5 IV (o) e (610)
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¢ Estimation of (IV): since P is a bounded operator in H?!,
/ v ( — v V(PAv) + P(v - VAD) + P(2V0 - VVU))dV
Q
5/ || (|v - V(PAD)| + [P(v - VAV)| + |P(2V0 - VVU)\)dV
Q
Sl vl 2 Vo920l 2 + 7] g2 ol e (19202 + [ 920] 12
SNvllze - [Vl e - [ V20 s
+ Ivlzz (lollze + vl z2) (IV vz + 90l 22 + |7 v]l22) (6.11)

2 3 3,14 2 2 2 2
Sl Vol 2:(IVP0ll o + lollz2l[@vl7e + ([Vollze + ([0 L2 Vo[22

1 3
Sl vl Za 1V vllze + | vl L1Vl 2 Vvl 22 + o]l [l v]|72
+ [ Volfe + v 2 [ Vo2,

LIVl + Vollte + o) o) f 2l o3
S5IVevllie + [ VollLe + |7l 2 [Vl £2 + [[vllzello o]z
+VollZs + [0l L2 Vo] Ze

¢ Estimation of (V): since

(V) :w%(nqupt, 0;]vi + [Dt,ai]vj))

(6.12)
~VH (i (050 - Vo + Oy - Vo) )
we have
/Q A - ( — VI (nin;(0jv - Vu; + O;v - ij))>dV
S - e/l | (mans (@0 Vs + 8- ¥05)) Loy (6.13)

S IV(@0)l[ L2V - 0vl| g + || L2 [V - Vol = @ + B

@ S IV V)2 (Vo Vo2 + [V (Vo - To)llz2 )
SV ()| 12| Vell | Vollp + 19 (e/0)] 2] V20| 4 [ Vo] o
SV 0]z Vol (9] 22 + [ V20] 2

+ [Vl [0 2 V0] 2 [ 920]
IV 0l Vo3 + Vvl 3e Vol o2 + [ Varoll f V0] 2| Volfs (6.14)
<5 IV0l3a + Vel + [Vt ol 2] 9l o

+ V2032 V032 + V2031 Voll3a
<5 IV vl + Vol + V0. | Vol o

+ vl Vola + o ola Vo) a.



FREE BOUNDARY VALUE PROBLEM OF THE NAVIER-STOKES EQUATIONS 27
® S Il (IVollr - V0] 1)
Sl vz Vo2 (1990 ] 22 + Vel 2z )
+ vl V 20l 22 (1990 22 + Vo]l 2)

Sl vll 2| Voll 2| Vv L2 + [l.7v]| 2| Vol 2
+ 0] L2 V20| L2 [ V] 2

(6.15)

1 9 9 2 3
S5IVol3a + 7oz (17 vle + [Vollz) + (l7vlle + [ Vollz2)

e Estimation of (VIII): (VIII) is given by
(VIII) :V% (nmjamR(az(vm + ’iji)) + ninj{RviamR(az(vm + Uj,i))
(6.16)
— RosR(0- (v +v;0))}).

Therefore,

v (VIIDAV = | (7~ o) (nmij(az(ui,j + Uj,i)))dS
Qp O

+ / (0 - Av) ("ianUiamR(az(%j + Uj,i))>d5
89,

- /a (- 0) (nany Res RO (0 + 0;))dS
Sl oll o - V2ol (6.17)
SUvlzz + IV.avllzz) (o - 20ll2 + [V (0 V20)] 12
SUvllzz + [9970]z2) (o - P02 + V0 - P02 + [lo - Vool 2)
=l ollzz (Ilo- V20llz2 + V0 - V20 g2 + o - Vol 2)

+ Vvl (o - 920l + Vo V202 + [0 Pollss) = © + @.

© S Il vlzllollzm + 7ol Vollzm + 0] 2 ol V2] 12
Sharvlldalvlzs + I vllie + lervla1Vollss + ool V2] 12

+ lolzz (lollze + /vl z2) (W ellzz + V70 22)
SherollZs (ollze + 7ol 22 + [Vl 22 + Vo] 12 )

+ vl fol o (IVellzs + Vol z2) (6.18)
SIVellza |97l gz (|l vllzz + o]z + [ 90] 22 + V7o) 22 + ol

IVl Lol 19 ol + 190l
I3 190l + | vl3 Vol + VoL + Vol Vvl

4 1
+ ol z=lIVolze + [ollz=lVolZ: + §||Vdv\|22.
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@ < Vvl zallvlpe V20l 2 + V0] L2 [ V0] oo [ V0 2
+ IV vl| g2 llv Lo | VP 2

SIVarvllzz (ollze + Ivlz2 + [ 90lz2 + [920llz2) ] o2

(6.19)
+ IV ollzz (lollze + vl 22 ) (IVellzz + Vo] 12)

Sz l1VollZe + Vol + [l vl 2 Vol e + [ollZ: [ Vol Z:

1
+ (Iwllez + 7 0lls2 ) [Vo/0)32 + IV vl

Collecting all terms, we finish the proof of Proposition 2.3.

6.2. Proof of Proposition 2.4, 2.5, and 2.6. In this section we study the term
(a). First, we write all terms in («).

(a) = / (ﬁ . ,!Zf’U) (nknlﬁkazﬁf(ﬂ - AO”’))dS
0N
1
4 - Ap(v-Vn)-A — Agn)dS
/aszt 1+ [Vnl? ooV Bol = Bon)

[ (T 4 AU R sy g
o0

1+[Vn|? V14 (V2

Agv
{2 Vs (1~ Don) + Agnds (0 — Aon)

- o0, V14 |Vnl?
1
+ §|V77|23333<%”(77 - Aoﬁ)}ds
Ao (n — Agn)
00, 1+ |Vn?

— (8383’03 — 83%(73, ST ’fL)) }dS

(6.20)

1
{(QV’I? . vag’()g + Aonagvzg + §‘v7]|283831}3)

+ /89,, (n-v) (nmjaiajji”(AOn — F(n)))dS,

where the first integral is summed up over k,l = 1,2,3 except for k =1 = 3. We
have to show that (9305v3 — 03 (n - T - n)) is quadratic.

83631}3 — (93%(71, -T- ’I?,) = (83631]3 — 83%(63’03))

|Vin|?
L+ [Vn[?

(6.21)

+ 83%”( agvg) - asyf(nknl(vk,l + vl,k)).

Since R = Id, (83631}3—83%(831}3)) =0and ((9333’03—83%(7L~T'n)) is quadratic
with coefficients V1. We have half more derivative to the harmonic extension parts
and half less derivative to the velocity field parts. Since all terms only depend
on (x,y), we transform 9Q; to R?, move half derivative from harmonic extension
parts to the velocity field parts. When we transform 09, to R? and vice versa,
the factor \/1 4 |Vn|? and its reciprocal appear, but these terms do not change the
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estimations below.

1
(@) 5 Inllas (9013 + IVol3) + 2190 - Aom)
+ / (n- ) (ninjaiaj%(Aon — F(n)))ds
o0

1
Sl (19003 + IV.rv]32) + 51V () = Aom) s

(6.22)
1 5
+ Il ol + (=1l ) IVl 9 E 0l
IIPE:
1
Shnllzs (190132 + 1970132 ) + 519261 — Aom) I3
+ il 1V 20l
Therefore, integrating (6.22) in-time,
5
@t S llegns (1900325 + IV 0l12) + Il V501 o)
6.23

1
+ SV 0 = F)IIZz 11

We have to estimate the term 1 V.2 (n — F(n))H%%Hi in (6.23). From the momen-

tum equation,
IV (0 = F) 7251 < el T2 + H0llI* + [loll*. (6.24)
Here, we need the factor % in (6.23) to move terms in the right-hand side of the
following lemma to the left hand of (2.17) in section 2.
Lemma 6.6. v; satisfies the following estimate:
lvelZa s < €+ Nl + ol + Wl s + ool Z2 - (6.25)

Proof. Since v; = 0 at the bottom,

[vellzm < / < g, v > dt.
To / < v, v¢ > dt, we take D; to the momentum equation.

Dy (vt +P(v- Vv)) + o (v +P(v- Vo)) + D, VA (n — F(n))
— [Dyv, v — o (v- Vo —P(v-Vv)).
We multiply (6.26) by (v + P(v - Vv)) and integrate over .

(6.26)

d
Sl + P V)24 < v 4+ P(v - Vo), v, + P(v - Vo) >
Slve +P(v - Vo)|[7 + /[Dt,d]v (v +P(v-Vo))dV + [|0%(v - Vo)l[7.  (6.27)

+ (DtV%(n —F(n)), v +P(v- Vv)).
Now, we calculate D;V#(n — F(n)) by commuting operators successively.
DN A (n— F(n) =VAH (Dy(n— F(n))) + V(A) T Av - VA (1 — F(n)))

— Vv -V (n—Fn)). (6.28)
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As before, A~! denotes the inverse of the Laplacian with zero Dirichlet boundary
condition at the free surface. Therefore, ([D;, V] (n — F(n))) is orthogonal to
(ve + P(v - Vv)).

d
%Hvt +P(v - V)||2:4 < v +P(v- Vo), v +P(v - Vv) >

<|lve +Pv - Vv)||%2 + / [Dy, v - (v + P(v - Vv))dV

t

+ (v Vo —P(v-Vo))|[L: + VA (0(n — Fn)|L-
+ VA (0 V(= Fm))|z + Vv VA (0 = F(n))|[72

(6.29)

We can estimate [|v; + P(v - Vo)||2. by [[ve]|22 + [||v]||* and we can control ||/ (v -
Vv —P(v-Vv))||2; by |||[v]|||*. Remaining terms are

VA (v-V(n—Fm))|7= + [V(A) T A(v- VA (n — F(n)))|7-
+ VA (8(n — F(m)) I3 (6.30)
SIlP - IV (= Fa) 3 + Inell3 + 1V 3013

Integrating (6.29) in-time,
/ < v +Pv-Vu),v +Plv- Vo) > dt
Set alorlZang + Il + Il PIV£ 0 — F)le
+ Imell32 s + HV%ntHQLm +//Qt [Dyv, v - (vy + P(v - Vo))dVdt

(6.31)
1 1
Set glolZags + NI+ 5190~ POy + Il sl 101

P+ lll? - 1V 20012 2
+// [Dw, & |v - (v + P(v - Vv))dV dt.
Q

Finally, we need to estimate the term: // [Dyv, 2o - (v, + P(v - Vv))dVdt. By
Q

the divergence-free condition of vy +P(v- Vv),ywe do the same estimate by replacing
/v with v, + P(v - Vv) in the proof of Proposition 2.3. Up to signs and (n;n;),

/[Dtv, Ao - (v +P(o - Vo))dV = /(w ) - (v + P(v - Vo))dV

+ / (IP(W - V20) + P(v- VA) + v V(P(Av))) : (vt +P(v- Vv))dV

+ /3 o (vt +Po- Vv))(Vv)2dS (6.32)
+ /3 o (vt +Pu- Vv)) (ntv% + oV + vv%) ds

+ / (v + B0 Vo)) - (V(A) A VA (0T n)) )av.
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Integrating (6.32) in-time,
//[Dtv,d]v (0 + P(v- Vo))Vt < %Hvt P V)2 s + IS (6:33)
Collecting all terms,

/<vt+IP’(v~Vv),vt+IP’(v-Vv) > dt

e+ IV~ FO) B + Ml + Il sllell? + (el (639
+ellPIVEnl 2
Since HVgnH%%H}C S|V (n — F(n))||i§H;, (see Lemma 6.7),
vellZz S €+ olll* + Holl? + 912 o llloll1* + Mol oel 720, (6.35)
which completes the proof of Lemma. O
Lemma 6.7. [|V(7 — F(n))”ifH,% SIVA = F)ll 2 p:

Proof. We will use the Dirichlet-Neumann operator. Suppose V.7 (n — F(n)) €
L?H!. We set f =n— F(n). Fori=1,2,

Gmf+Vn-Vf 91
R(0;¢ =0;(f)— 0; LyHZ. 6.36
Therefore, by the product rule of fractional derivatives,
1 < oo 73 * 1 - 2771, .
HVfHL%HE S nllze ms ||Vf||L§H3 + VA (= F)ll 2 (6.37)

Here, we use the fact that G(n) is a first order pseudo-differential operator. For its
properties, see [8]. By the smallness of ||n|| e g3, we finish the proof of Lemma. [

We prove Proposition 2.5. By (2.17) and the commutator estimate,
Il + 3 sy S €+ el + | / (a)t]. (6.38)

We replace ‘ / (a)dt| in (6.38) by (6.23).

o2 + 120
1
Set el + 5 (Nenll 2y + 19261 = FO)) 22y ) (6.39)
1903 s 10112 + 19113 115V = F )22 101
We substitute [|[v]||? in (6.39) into (6.24).

1
190 = P2 S e+ 5 (lodlzis + IV FO)) 21

{0 2o gz Ol + 11011+ 10l Foe 12 V5 (0 = F0)) 172511 -
We substitute |||v]||? in (6.39) into (6.35).

(6.40)

lwellZepzs S €+ 0l + Il Zee w0112 + [0l loel 72 12

1
il e ol + 5 (ol + 1900 = Fo) ) (6.41)
10l 12 190 = F) |-
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By adding (6.40) and (6.41),
el s + 1920 — F ) 230
Se+ [[oll1* + l1nll = ma[[0]1* + 119117 gra 10111 (6.42)
FlPlvel 2 1 + 10117 12 IV 22 (0 = F)) 2 11
which is the end of the proof of Proposition 2.5.
By (6.23) and (6.42), we have the estimate of /(a)dt’.

| [ @] il s el + ol + 1oll Pl

(6.43)
020 2V (0 = E )2 .
Therefore, we finish the proof of Proposition 2.4.
Proposition 6.8. Korn-type inequality
1
Vv|3ope S | < v, /v > dt tt | Vel
Vet 5 [ < v > @ lloll' + g1Vl o

+ IV (1~ Fm) 7251

Proof. Since «/v does not vanish at the bottom, we cannot apply Korn’s inequality
directly to @7v. But, from the momentum equation,

Hdv+VH(n—Fn)—v-Vo+Pl-Vv)=—v, —v-Vo. (6.45)
Since the right-hand side of (6.45) vanishes at the bottom,
|0(v+ VI (n—F(n)) —v-Vo+Pv-Vov))ie
A0+ VA (= Fm) + B~ D(v- Vo), S0+ VA0~ Fm)  (6.46)
+(P—I)(v- W)>.
Therefore, we have that

1
IVetolfess 5 [ < ofv,afv > dtt [lolll*+ 1970l

+IV2 (1 — F())ll7212,
which completes the proof of Proposition 2.6. O

(6.47)
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